
Basics of Shell Scripting

github.com/grapheo12

1

github.com/grapheo12

Introduction

What is a Shell?

• Shell is a program that let’s you run shell commands.

• A Shell is a command line interpreter, which runs your shell scripts.

• Shell is not equal to a Terminal.

• Examples:

• tcsh
• fish
• Bourne - Again Shell (bash)
• zsh etc.

2

What is a Terminal then?

• A terminal emulator is a graphical program that is used to run the shell.

• It emulates, although in a small window and with lots of add-ons, the tty interface.

• Examples:

• GNOME Terminal
• Konsole
• urxvt
• Alacritty
• XTerm
• Termite etc.

3

Wait! What is tty?

• tty (stands for Teletype) is text based interface to your operating system.

• On most Linux systems, you can use multiple teletype sessions and they can be
accessed by hitting Ctrl + Alt + F<1-12> .

• What does a tty launch after you login into one? Yes, your default shell.

4

Pipes and redirections i

• Everything in Linux is a file. stdin , stdout and other streams are also
(kinda) files.

• Shell commands (we’ll see a few in a moment) generally spit there outputs to
stdout and in some mode take input from stdin .

• What this means, is that we can redirect the output of one command to the input
of the other without creating an intermediate file.

• To do so we use the pipe (|).

• For example, suppose we write out something using echo and want to print the
number of lines in it using wc . The command for that will be:

5

Pipes and redirections ii

echo "Lorel ipsum dolor sit amet.\nSic mundus creatus es" | wc -l

• Operators for redirecting input/output from specific files / streams are:
• < inputfile Redirects stdin to take input from a file.
• > outputfile Redirects the output to a new file (Existing file is overwritten).
• >> outputfile Appends the output to a file.

• An useful pattern is to redirect stderr to /dev/null (the black hole of
Linux), so that it doesn’t pollute your output: 2>/dev/null .

6

Some Basic Commands

ls i

• This is used to list files.

• Usage: ls -[Options] [path]

• If a path is not given, current directory is assumed.

• Path can also contain wildcards. Example: ls *.pdf will list all the pdf files in
the current directory.

• Options consists of one or a combination of character flags that invoke special
functions:

• l : List files with additional metadata
• a : Show hidden files also. (Name begins with .)

7

ls ii

• h : Show file sizes in MBs and GBs instead of bytes.
• t : Sort by date modified.
• . . . and many more.

• Multiple options can be combined as: ls -lah .

Exercise: Open a shell and create a file with the list of all files (both hidden and visible)
sorted by the date modified.

8

echo and printf i

• These are used to print stuff (Obvious Lol!)

• printf supports formatted output like C. echo doesn’t.

• echo is more common in use than printf .

• Usage: echo "some text" or printf "format string" "parameters" .

9

echo and printf ii

Single and double quotes in bash
In bash, both single and double quotes are allowed. However there is subtle difference
in behaviour. Inside double quoted string, you can use sub-commands enclosed by
$() . This is not possible with single quotes. Run:

echo "$(ls /bin)"

and

echo '$(ls /bin)'

to see the difference.

10

cat, head and tail i

Figure 1: This is what these commands mean, literally!

• cat stands for conCATenate . cat file1 file2 file3 will output all
the 3 files combined in the given sequence.

11

cat, head and tail ii

• However, in practice, people use cat to print out the 1 full file only.

• head prints out the first few lines of a file and tail prints out the last few
lines of a file.

• Both accept a parameter -n<Number> . This limits the output to Number
number of lines.

Example: to get the first 15 lines of a line, run:
head -n15 file

12

find i

• find is quite powerful as a utility.

• Its basic task is to recursively print out all the files and directories from a given
path.

$ find . # Search starts from current directory
$ find / # Search starts from root

• Although there are many filters and actions that find can perform.

• For example, find -type f finds only files. Change f to d and it will find
only directories.

13

find ii

• find -name expr will match expr to the file names. expr can be a
string with wildcards.

• These filters can also be combined.

• The default action is -print .

• However find -delete will delete all the files it was supposed to print.

• Furthermore, find -exec will execute arbitrary command on the file names.

For example:

find -name "*.js" -exec rm {} \;

14

find iii

will delete all js files. Here {} is a placeholder for the file name.

• Know more by running man find .

15

grep i

• grep prints those lines in a given list of files that match a pattern.

• Usage: grep pattern filename .

• Another common usage is to pipe the output of some other command to grep. For
example:

cat file | grep kharagpur

This will find all lines in a file that have the string “kharagpur” in it.

• pattern can be a Regular Expression too. For example:

16

grep ii

whois google.com | grep [Cc]ountry

will fetch the whois record of Google.com using whois CLI (installed separately) and
from that record, will find out all string which have either “country” or “Country” in it.

17

which

• Every command that you run in the shell actually is an executable located
somewhere in your PATH (it is an environment variable, more on that later).

• To find out which particular executable is being run, which is used.

$ which echo
/usr/bin/echo

Resolving virtualenvs
While working with multiple Python projects together, one might get confused as to
what the current python binary is being used. At that time, running which python
helps a lot.

18

cp, mv and mkdir

• cp some/path/file some/other/path copies file from some/path to
some/other/path .

• To recursively copy a folder and all its files and subdirectories, we use cp -r .

• The main job of mv is to move files and folders from one directory to the other.

• Althought mv file newname renames the file file to newname .

• Paths in cp and mv also support wildcards. For example,
cp yt-slides/*.pdf folder2/ copies only the pdf files.

• mkdir makes directories. Usage:
mkdir existing/path/new_directory_to_make . This creates a new
directory new_directory_to_make under the existing path existing/path .

• However, if the parent directory doesn’t exist yet, we can create the whole hierarchy
by using the -p flag.

19

rm and rmdir

• rmdir removes empty directories.

• rm is a general command for removal of files and folders.

• To recursively delete, use the -r flag with rm .

Warning
NEVER RUN:

sudo rm -rf /

20

wc, sort, shuf, . . .

These fall under the category of text manipulation programs.

• wc returns the newline, word and byte count for each of the files that are passed
to it.

• We can get the individual newline, word or byte count by using -l , -w or
-c flags respectively.

• sort sorts the lines of a document in lexicographical order. Although the
ordering can be changed using appropriate flags.

• sort -u gives the unique lines in the document.

• shuf randomly selects a few lines from a file. The number of lines to take can be
passed using -n<Number> flag.

• Other programs of this category are: uniq , split etc. 21

wget and curl

• These programs are used to fetch resources from the internet.

• wget , as the name suggests, performs only GET requests.

• By default, wget saves the output to a file in the current directory. However, this
can be changed using the -o flag.

• cURL is a more generic tool. It can be used to perform arbitrary HTTP requests.

For example, sending a POST request to an URL through curl is as follows:

curl -X POST -H 'Content-type: application/json'
-d '{"message": "Hello"}' http://url/endpoint

-X defines request method, -H defines headers, -b defines Request body.

22

Exercise

Look for the usage of these commands:

• man
• history
• sed
• awk
• top
• xargs
• cut
• time

23

Variables and Control Flow

Variables

• Variables here are not typed.

• All variables, when USED should be preceeded by $ symbol.

• However, while declaring you should never use the $ symbol.

Example:

$ a=2 # Don't forget to put no space around equals
$ echo $a # Btw this is a comment.

24

Environment Variables i

• These are variables that are picked up applications to modify their behaviour.

• Commands to set environment variables are export and set .

• Exported variables permeate to subshells, whereas set variables do not. It varies by
shell, though.

• Environment variables can also be set for a particular program just by prepending it
before the program name

• These variables are unset when the shell closes, unless you have specified them in
your .bashrc .

• You can view all current environment variables by the env command.

25

Environment Variables ii

Examples:

$ export HTTP_PROXY=172.16.2.30
$ set http_proxy=172.16.2.30
$ DRI_PRIME=1 ./android-studio
DRI_PRIME is used to change video card

26

Some Special Variables

• $$ is the PID of the script.

• $! is the PID of most recently executed background pipeline.

• In a bash script, $0 can be used to get the script name. $i for i >= 1 can be
used to get the argument variables. (Compare with sys.argv of Python)

• $PS1 controls the line shown at each prompt.

• $PATH contains a : separated list of

27

Conditionals i

Bash doesn’t use braces or indentation to mark the blocks.

The basic structure of an if block is as follows:

28

Conditionals ii

if [condition1]
then

Block to execute
elif [condition2]
then

Block
else

Block
fi

• [] are a reference to the test command, which is run internally to check for
the conditions.

29

Conditionals iii

• Normal operators like = , != apply to String comparison.

• Integer comparisons are done using -eq , -gt and -lt . (Guess their
meaning!).

• ! Expr negates the expression Expr .

• Some special comparisons:

• -n str : Length of string is > 0.
• -z str : Length is == 0.
• -d file : file is an existing directory.
• -e file : file exists.
• -r file : file exists and the read permission is granted.
• -s file : file exists and is not empty.

30

Conditionals iv

• -w file : file exists and the write permission is granted.
• -x file : file exists and the execute permission is granted.

31

for Loops i

• Bash’s for loop is similar to the Python one.

• Although the concept of array is not present in bash.

• Common patterns:
for i in var1 var2 var3
do

Do something with $i
vari can be numbers also

done

32

for Loops ii

for i in $(Command with multiple line output)
do

$i will contain one line at a time
done

for i in {1..5} # {START..STOP} range

for i in {1..5..2} # {START..STOP..STEP} range

for i in $(seq 1 100) # 1 to 100 sequence

33

while Loops i

• while loops iterate while their conditions are true.

• Syntax:

while [condition]
do

Something to do
done

• A common pattern observed while using the while loop is incrementing the
variables. This is done as shown: x=$(($x + 1)) .

• Another common usage of while is with the read command:

34

while Loops ii

while read p
do

Something with $p
done

This reads from stdin line by line until EOF is received.

• while with no condition is an infinite loop.

• break and continue work as common sense predicts.

• Exercise: Read about case statement.

35

Putting it all together

.sh scripts i

• Apart from running from terminal, we can also put our commands in a script file.

• Files can be run as sh script.sh .

• To be able to run the script as an executable, we need to set executable flag on it.
This is done by:

$ chmod +x script.sh

• But before that, we need to declare which shell to use to run it.

• This is done on the very first line of the script, by writing:

36

.sh scripts ii

#!/bin/bash

• This is called the Shebang line.

• Following the previous 2 steps, one can then execute the script as:

$./script

37

.bashrc

• When a shell is loaded on a terminal, you might want to run some commands
before hand.

• For example, you might want to change the PATH variable so as to include your
java compiler, or you might want to set the proxy variables.

• This can be achieved by putting the relevant commands in the bash configuration
files.

• For user settings, we use $HOME/.bashrc .

• For root settings, the files are located in /etc .

38

Exercises

Practice is the key

As with any language, you can only know all the nuances once you get your hands dirty.

Teaching with slides merely does half the job.

Here are some problems to ponder.

39

Problem 1

From user, take n as an input.

Then take n numbers as input.

Sort the numbers and display.

40

Problem 2

Get the path of all .py files in your computer.

Then find out how many times in all these files the os module has been imported.

41

	Introduction
	Some Basic Commands
	Variables and Control Flow
	Putting it all together
	Exercises

