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Context: Distributed Trust Ledgers
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Consensus Protocols
Crash Fault Tolerance (CFT)

●Must Trust your replicas:
○Crash,
○But strictly follow protocol.

Byzantine Fault Tolerance (BFT) 

●Replicas not trusted to 
follow protocol:
○Arbitrary/malicious 

behaviour (for at most 
1/3rd of nodes)
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Why not just use BFT, always?
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Lower 
Throughput!

Higher Latency!



Why?
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● f more nodes.

3f + 1

f

● More phases! (at least 1 more than CFT protocols)

● Crypto overhead:
○ Signatures
○ MACs



Is there a workaround?
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Can we STOP malicious behavior from happening?!

Trusted Execution Environments (TEE)



TEEs to rescue

● Integrity
○ Attestation proves to the operator that the 

code running in each replica is the intended 
one.

●Confidentiality
○ Hardware protected keys.

n >= 2f + 1

f

TEETEE TEE

Can get away with using cheap CFT 

protocols! (with some mods)
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Are we done?
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What is a realistic model for TEE faults?
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CFT OK!



What is a realistic model for TEE faults?
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CFT still OK!



What is a realistic model for TEE faults?
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ALL nodes affected!
Even BFT can’t handle this



Platform Fault Tolerance: The better model
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Timeline of a TEE platform failure
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t

Vulnerability 
discovered

Vulnerability 
reported

All nodes 
patched



Timeline of a TEE platform failure
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t

Vulnerability 
discovered

Vulnerability 
reported

All nodes 
patched

CFT OK!

Recover +
BFT w/ other platforms

Attack 
window

CFT OK again!



PirateShip goals

● Security: Gracefully handle malicious TEEs/platforms.
○ Quickly check/reconcile logs.
○ Seamless; no external intervention.

● Performance: Keep overheads wrt CFT as low as possible. 
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Performance vs Security

Crash Commit
for lower latency

Byz Commit
for better security
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Byz CI Crash CI

O(1)
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Key Idea:

Embedding asynchronous BFT logic inside CFT protocol
without sending extra messages



How?
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Key Insight:

CFT and BFT protocols are not THAT different!



How?

● Pipelining

● Hash-chaining

● Asynchronous vote counting
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Initial Results
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Conclusion

● We present the notion of Platform Fault Tolerance to better model TEE-
based distributed ledgers.

● We presented PirateShip, a new consensus protocol for TEEs that 
exhibits CFT-like performance but asynchronously provides BFT 
guarantees.
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Thank you!
Questions?

shubham_mishra@berkeley.edu
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