# PirateShip: Distributed Consensus for (mostly) Trusted Execution Environments

**Shubham Mishra**, Amaury Chamayou, Natacha Crooks, Heidi Howard, Markus Kuppe







#### **Context: Distributed Trust Ledgers**



#### Consensus Protocols Crash Fault Tolerance (CFT)

2f + 1

Must Trust your replicas:
OCrash,
OBut strictly follow protocol.

**Byzantine Fault Tolerance (BFT)** 





#### Why not just use BFT, always?



## Why?



3f + 1

• More phases! (at least 1 more than CFT protocols)

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

- Crypto overhead:
  - Signatures
  - MACs

Is there a workaround?

Can we STOP malicious behavior from happening?!

#### **Trusted Execution Environments (TEE)**

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

![](_page_5_Picture_5.jpeg)

# **arm** TRUSTZONE

### **TEEs to rescue**

![](_page_6_Picture_1.jpeg)

#### • Integrity

- Attestation proves to the operator that the code running in each replica is the intended one.
- Confidentiality • Hardware protected keys.

n >= 2f + 1

![](_page_6_Picture_6.jpeg)

Can get away with using cheap CFT protocols! (with some mods)

#### Are we done?

#### SGX-Step: A Practical Attack Framework for Pre Faults in Our Bus: Novel Bus Fault Attack to Break Enclave Execution Control ARM TrustZone

Jo Van Bulck imec-DistriNet, KU Leuven jo.vanbulck@cs.kuleuven.be Frank Piessens imec-DistriNet, KU Leuven frank.piessens@cs.kuleuven.be Raoul Strackx imec-DistriNet, KU Leu raoul.strackx@cs.kuleuw

Nimish Mishra, Anirban Chakraborty, Debdeep Mukhopadhyay Indian Institute of Technology Kharagpur nimish.mishra@kgpian.iitkgp.ac.in, anirban.chakraborty@iitkgp.ac.in, debdeep@cse.iitkgp.ac.in

Andrin Bertschi

#### FORESHADOW: Extracting the Keys to the Intel SGX Ki Transient Out-of-Order Execution

#### WESEE: Using Malicious #VC Interrupts to Break AMD SEV-SNP

Jo Van Bulck<sup>1</sup>, Marina Minkin<sup>2</sup>, Ofir Weisse<sup>3</sup>, Daniel Genkin<sup>3</sup>, Baris Kasikc Mark Silberstein<sup>2</sup>, Thomas F. Wenisch<sup>3</sup>, Yuval Yarom<sup>4</sup>, and Raoul

<sup>1</sup>imec-DistriNet, KU Leuven, <sup>2</sup>Technion, <sup>3</sup>University of Michigan <sup>4</sup>University

#### One Glitch to Rule Them All: Fau AMD's Secure Encryptic SEVered: Subverting AMD's Virtual Machine Encryption

Benedict Schlüter

Robert Buhren robert.buhren@sect.tu-berlin.de Technische Universität Berlin - SECT

Thilo Krachenfels tkrachenfels@sect.tu-berlin.de Technische Universität Berlin - SECT Mathias Morbitzer, Manuel Huber, Julian Horsch and Sascha Wessel

Supraja Sridhara

Fraunhofer AISEC Garching near Munich, Germany {firstname.lastname}@aisec.fraunhofer.de

rraunnoter 511

Shweta Shinde

#### What is a realistic model for TEE faults?

![](_page_8_Picture_1.jpeg)

![](_page_8_Picture_2.jpeg)

#### What is a realistic model for TEE faults?

![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

### What is a realistic model for TEE faults?

![](_page_10_Picture_1.jpeg)

ALL nodes affected! Even BFT can't handle this

### Platform Fault Tolerance: The better model

![](_page_11_Picture_1.jpeg)

### Timeline of a TEE platform failure

![](_page_12_Figure_1.jpeg)

### Timeline of a TEE platform failure

![](_page_13_Figure_1.jpeg)

## PirateShip goals

# Security: Gracefully handle malicious TEEs/platforms. Quickly check/reconcile logs.

• Seamless; no external intervention.

#### • Performance: Keep overheads wrt CFT as low as possible.

#### Performance vs Security

#### **Crash Commit**

for lower latency

# Byz Commit

for better security

![](_page_15_Figure_5.jpeg)

#### Key Idea:

# Embedding asynchronous BFT logic inside CFT protocol without sending extra messages

#### How?

Key Insight:

#### CFT and BFT protocols are not THAT different!

![](_page_17_Figure_3.jpeg)

#### How?

- Pipelining
- Hash-chaining
- Asynchronous vote counting

#### **Initial Results**

![](_page_19_Figure_1.jpeg)

### Conclusion

- We present the notion of Platform Fault Tolerance to better model TEEbased distributed ledgers.
- We presented PirateShip, a new consensus protocol for TEEs that exhibits CFT-like performance but asynchronously provides BFT guarantees.

Thank you! Questions? shubham\_mishra@berkeley.edu