
PirateShip: Distributed Consensus for
(mostly) Trusted Execution Environments

Shubham Mishra, Amaury Chamayou, Natacha Crooks,
Heidi Howard, Markus Kuppe

Context: Distributed Trust Ledgers

2

Consensus Protocols
Crash Fault Tolerance (CFT)

●Must Trust your replicas:
○Crash,
○But strictly follow protocol.

Byzantine Fault Tolerance (BFT)

●Replicas not trusted to
follow protocol:
○Arbitrary/malicious

behaviour (for at most
1/3rd of nodes)

2f + 1

f

3f + 1

f

3

Why not just use BFT, always?

4

Lower
Throughput!

Higher Latency!

Why?

5

● f more nodes.

3f + 1

f

● More phases! (at least 1 more than CFT protocols)

● Crypto overhead:
○ Signatures
○ MACs

Is there a workaround?

6

Can we STOP malicious behavior from happening?!

Trusted Execution Environments (TEE)

TEEs to rescue

● Integrity
○ Attestation proves to the operator that the

code running in each replica is the intended
one.

●Confidentiality
○ Hardware protected keys.

n >= 2f + 1

f

TEETEE TEE

Can get away with using cheap CFT

protocols! (with some mods)
7

Are we done?

8

What is a realistic model for TEE faults?

9

CFT OK!

What is a realistic model for TEE faults?

10

CFT still OK!

What is a realistic model for TEE faults?

11

ALL nodes affected!
Even BFT can’t handle this

Platform Fault Tolerance: The better model

12

Timeline of a TEE platform failure

13

t

Vulnerability
discovered

Vulnerability
reported

All nodes
patched

Timeline of a TEE platform failure

14

t

Vulnerability
discovered

Vulnerability
reported

All nodes
patched

CFT OK!

Recover +
BFT w/ other platforms

Attack
window

CFT OK again!

PirateShip goals

● Security: Gracefully handle malicious TEEs/platforms.
○ Quickly check/reconcile logs.
○ Seamless; no external intervention.

● Performance: Keep overheads wrt CFT as low as possible.

15

Performance vs Security

Crash Commit
for lower latency

Byz Commit
for better security

16

Byz CI Crash CI

O(1)

17

Key Idea:

Embedding asynchronous BFT logic inside CFT protocol
without sending extra messages

How?

18

Key Insight:

CFT and BFT protocols are not THAT different!

How?

● Pipelining

● Hash-chaining

● Asynchronous vote counting

19

Initial Results

20

Conclusion

● We present the notion of Platform Fault Tolerance to better model TEE-
based distributed ledgers.

● We presented PirateShip, a new consensus protocol for TEEs that
exhibits CFT-like performance but asynchronously provides BFT
guarantees.

21

Thank you!
Questions?

shubham_mishra@berkeley.edu

	Slide 1: PirateShip: Distributed Consensus for (mostly) Trusted Execution Environments
	Slide 2: Context: Distributed Trust Ledgers
	Slide 3: Consensus Protocols
	Slide 4: Why not just use BFT, always?
	Slide 5: Why?
	Slide 6: Is there a workaround?
	Slide 7: TEEs to rescue
	Slide 8: Are we done?
	Slide 9: What is a realistic model for TEE faults?
	Slide 10: What is a realistic model for TEE faults?
	Slide 11: What is a realistic model for TEE faults?
	Slide 12: Platform Fault Tolerance: The better model
	Slide 13: Timeline of a TEE platform failure
	Slide 14: Timeline of a TEE platform failure
	Slide 15: PirateShip goals
	Slide 16: Performance vs Security
	Slide 17: Key Idea: Embedding asynchronous BFT logic inside CFT protocol without sending extra messages
	Slide 18: How?
	Slide 19: How?
	Slide 20: Initial Results
	Slide 21: Conclusion

