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Context: Distributed Trust Ledgers
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®Must Trust your replicas: ®Replicas not trusted to
OCrash, follow protocol:

OBut strictly follow protocol. O Arbitrary/malicious

behaviour (for at most
1/3rd of nodes)



Why not just use BFT, always?
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Why?
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e More phases! (at least 1 more than CFT protocols)
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e Crypto overhead:

O Signatures
o MAGs



Is there a workaround?

Can we STOP malicious behavior from happening?!

Trusted Execution Environments (TEE)
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TEESs to rescue

® Integrity

O Attestation proves to the operator that the
code running in each replica is the intended
one.

e Confidentiality
O Hardware protected keys.

n>=2f+1

Can get away with using cheap CFT
protocols! (with some mods)




Are we done?
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What is a realistic model for TEE faults?
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CFT OK!



What is a realistic model for TEE faults?
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CFT still OK!
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What is a realistic model for TEE faults?

- - ALL nodes affected!
Even BFT can’t handle this
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Platform Fault Tolerance: The better model
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Timeline of a TEE platform failure

Vulnerability
discovered

Vulnerability
reported

All nodes
patched

13



Timeline of a TEE platform failure

Attack
window Recover +
BFT w/ other platforms
CFT OK! A
Vulnerability | | Vulnerability All nodes
discovered reported patched

CFT OK again!
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PirateShip goals

e Security: Gracefully handle malicious TEEs/platforms.
O Quickly check/reconcile logs.
O Seamless; no external intervention.

® Performance: Keep overheads wrt CFT as low as possible.
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Performance vs Security

Crash Commit Byz Commit
for lower latency for better security
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Key ldea:

Embedding asynchronous BFT logic inside CFT protocol

without sending extra messages
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Client

Replica
(Leader)

Replica

How?

Key Insight:

CFT and BFT protocols are not THAT different!
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How?
e Pipelining
e Hash-chaining

e Asynchronous vote counting
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Initial Results
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Conclusion

e We present the notion of Platform Fault Tolerance to better model TEE -
based distributed ledgers.

e We presented PirateShip, a new consensus protocol for TEEs that
exhibits CFT-like performance but asynchronously provides BFT
guarantees.

Thank you!

Questions?
shubham_mishra@berkeley.edu
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