PirateShip: Distributed Consensus for
(mostly) Trusted Execution Environments

Shubham Mishra, Amaury Chamayou, Natacha Crooks,
Heidi Howard, Markus Kuppe

Context: Distributed Trust Ledgers

@ signal @ sigstore

C:) SPLINTER 1| Hiero

g: I[l"l-saultnlso%%nl:c)er&F%COIS Byzantine Fault Tolerance (BFT)
I—I—I |—I—|
G T B .E B @ §

Y
2f+1 3f+1

®Must Trust your replicas: ®Replicas not trusted to
OCrash, follow protocol:

OBut strictly follow protocol. O Arbitrary/malicious

behaviour (for at most
1/3rd of nodes)

Why not just use BFT, always?

25

N
o

Latency (ms)

[
wh

[
o

20

e

—e— Raft —+— PBFT

R

Lower

40

Throughput!
Higher Latency!)
60 80 100

Throughput (k req/s)

Why?

f
e f more nodes. _ ——
R] R R &

3Af+1

e More phases! (at least 1 more than CFT protocols)

Client - _ request F"-“F"'-‘F'"-‘ prepare | commit | _reply
client T T T T
R [rl
Replica r server
(Leader \ /,/ (rimary)
server 2 '
seTver 3
Replica : F I'-q
T server 4 .

e Crypto overhead:

O Signatures
o MAGs

Is there a workaround?

Can we STOP malicious behavior from happening?!

Trusted Execution Environments (TEE)

arm
TRUSTZONE

TEESs to rescue

® Integrity

O Attestation proves to the operator that the
code running in each replica is the intended
one.

e Confidentiality
O Hardware protected keys.

n>=2f+1

Can get away with using cheap CFT
protocols! (with some mods)

Are we done?

SGX-Step: A Practical Attack Framework for Pre F'aults in Our Bus: Novel Bus Fault Attack to Break

Enclave Execution Control ARM TrustZone
Jo Van Bulck Frank Piessens Raoul Strackx
imec-DistriNet, KU Leuven imec-DistriNet, KU Leuven imec-DistriNet, KU Lew
Jovanbalck@cs kuleuven be frank piessens@cs kuleuven be raoul.strackx@cs. kubeuwvy Nimish Mishra, Anirban Chakraborty, Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur
nimish. mishra@ kgpian jitkgp.ac.in, anirban.chakraborty @iitkgp.ac.in, debdeep@cse jitkgp.ac.in

FORESHADOW: Extracting the Keys to the Intel SGX Ki

Transient Qut-of-Order Execution ywpgpg: Using Malicious #VC Interrupts to Break AMD SEV-SNP

Jo Van Bulck', Marina Minkin®, Ofir Weisse®, Daniel Genkin®, Baris Kasike
Mark Silberstein®, Thomas F. Wenisch®, Yuval Yarom®, and Raoul) — >) y
Benedict Schliiter Supraja Sridhara Andrin Bertschi Shweta Shinde

. - - > - . . - . - . o
'imec-DistriNet, KU Leuven, *Technion, *Universie ~# Michiamn 41 i

One Glitch to Rule Them All: Fau o . . .
AMD’s Secure Encrypt. SEVered: Subverting AMD’s Virtual Machine Encryption

Robert Buhren

robert buhren@sect tu-berlin.de Mathias Morbitzer, Manuel Huber, Julian Horsch and Sascha Wessel
Technische Universitit Berlin - SECT Fraunhofer AISEC
Thiloe Krachenfels . . «
tkrachenfels@@sect tu-berlinde Gﬂ.ﬂ.‘hlﬂg near MI.II'I_ICI'I. Germany
Technische Universitit Berlin - SECT {firstname.lastname}@aisec.fraunhofer.de

FraunmHEer 11 8

What is a realistic model for TEE faults?

a

\u

-
R

101
N
T

CFT OK!

What is a realistic model for TEE faults?

a

\u

\ /
} ‘

-
R

LLL
E o =
\lll

CFT still OK!

10

What is a realistic model for TEE faults?

- - ALL nodes affected!
Even BFT can’t handle this

N

<

11

Platform Fault Tolerance: The better model

a)\
0 B
Dl

-

N\

A
&
)

-

U

a)
R
L)

12

Timeline of a TEE platform failure

Vulnerability
discovered

Vulnerability
reported

All nodes
patched

13

Timeline of a TEE platform failure

Attack
window Recover +
BFT w/ other platforms
CFT OK! A
Vulnerability | | Vulnerability All nodes
discovered reported patched

CFT OK again!

14

PirateShip goals

e Security: Gracefully handle malicious TEEs/platforms.
O Quickly check/reconcile logs.
O Seamless; no external intervention.

® Performance: Keep overheads wrt CFT as low as possible.

15

Performance vs Security

Crash Commit Byz Commit
for lower latency for better security
Byz ClI Crash ClI
[— o) —

16

Key ldea:

Embedding asynchronous BFT logic inside CFT protocol

without sending extra messages

17

Client

Replica
(Leader)

Replica

How?

Key Insight:

CFT and BFT protocols are not THAT different!

agyregete,

aqyegate
agyregote, And phoser erpate 3od phasei crpate

Yy Y Y
:
P E
m.
i
e

S~ 7
N v

tme

18

How?
e Pipelining
e Hash-chaining

e Asynchronous vote counting

19

Initial Results

—e— signed _raft —+— pirateship —e— pbft —w»— pirateship-byz

300

w—n

200
e e e b e g e e e i s et s et W

Latency (ms)
[
o
-

rJ
o
[

[} e
| 20 40 60 80 100 120
Throughput (k req/s)

Conclusion

e We present the notion of Platform Fault Tolerance to better model TEE -
based distributed ledgers.

e We presented PirateShip, a new consensus protocol for TEEs that
exhibits CFT-like performance but asynchronously provides BFT
guarantees.

Thank you!

Questions?
shubham_mishra@berkeley.edu

21

	Slide 1: PirateShip: Distributed Consensus for (mostly) Trusted Execution Environments
	Slide 2: Context: Distributed Trust Ledgers
	Slide 3: Consensus Protocols
	Slide 4: Why not just use BFT, always?
	Slide 5: Why?
	Slide 6: Is there a workaround?
	Slide 7: TEEs to rescue
	Slide 8: Are we done?
	Slide 9: What is a realistic model for TEE faults?
	Slide 10: What is a realistic model for TEE faults?
	Slide 11: What is a realistic model for TEE faults?
	Slide 12: Platform Fault Tolerance: The better model
	Slide 13: Timeline of a TEE platform failure
	Slide 14: Timeline of a TEE platform failure
	Slide 15: PirateShip goals
	Slide 16: Performance vs Security
	Slide 17: Key Idea: Embedding asynchronous BFT logic inside CFT protocol without sending extra messages
	Slide 18: How?
	Slide 19: How?
	Slide 20: Initial Results
	Slide 21: Conclusion

